
Kopenograms and their implementation in BlueJ

Rudolf Pecinovský, Marek Chadim
Department of Information Technologies

University of Economics, Prague
Prague, Czech Republic

rudolf@pecinovsky.cz, Marek.Chadim@seznam.cz

Abstract—Although currently the bulk of the most common
algorithmic tasks are included in libraries of programming
languages, it is necessary to realize, that upon completion of
object oriented design of application, we still not avoid of using
more complex algorithmic constructions. For its visual projection
and easier understanding several graphic languages are used.
Architecture First methodology for its purpose prefers
kopenograms, as one of the most suitable method of displaying
structured algorithm. This paper deals with the tool, which was
added to IDE BlueJ in order to improve support of Architecture
First methodology by this IDE and which allows students to show
kopenogram of selected method in a simple manner in interactive
mode.

Keywords—kopenograms; Architecture First; OOP; algorithm;
BlueJ

I. INTRODUCTION
Objected oriented programming languages are currently the

most widely used around the world. Simultaneously,
everything suggests, that this situation will persist. It is
therefore natural, that the most widespread methodology of
teaching programming is Objects First. For this purpose was
developed educational IDE BlueJ. This IDE allows to start
teaching of programming in really objective way. It means, that
teaching starts in interactive mode, which allows students to
better understand objected oriented principles. Unfortunately,
this method of education is quickly abandoning its premise and
interpretation is starting to go towards the syntax an
algorithmic constructions. So, even though the Objects First
methodology is based on the excellent idea, untapped potential
is obvious at first sight.

Architecture First methodology, developed on Department
of Information Technologies at The University of Economics
in Prague, is trying to eliminate these drawbacks. This
methodology claims, that if students have to learn how to make
really good objected oriented architecture of application, they
have to come into contact with this from the beginning, in
order to have enough time to acquire thinking in objects.
Therefore students are on the layer of architecture since the
first lessons. This ensures that students are not unnecessarily
distracted by syntax and programming construction, so they
can fully concentrate on architecture design of application.

All the code is created by code generator, which allows to
work in the interactive mode [2]. This generator is currently
also integrated to modified version of BlueJ, which is

developed in University of Economics, in Prague in order to
better meets the needs of Architecture First methodology. The
textbook [4] can serve as an example of how teaching is
designed in accordance with this methodology. However it is
important to say, that in time, when this book was written, IDE
BlueJ was not modified for the needs of Architecture First
methodology, so the book does not use the advanced code
generator features, which were added later.

Though the Architecture First methodology tries
interpretation of algorithmic construction delay as much as
possible, it is obvious, that students will sooner or later come
into contact with it. After the object analysis is completed, it is
often inevitable to design more complex algorithmic
construction.

In order to allow students to better absorb interpretation of
algorithm is for this purpose used several method of projection
of its structure. According to the Architecture First
methodology the best way is to use kopenograms. Reasons,
why kopenograms are the best graphical interpretation of
algorithms are described in next section.

II. KOPENGRAMS

A. History of kopenograms
Currently the most common form, which is used for

representation of algorithm, is flowchart. Disadvantage of
flowcharts lies in the fact, that they do not coerce users to
construct algorithm in accordance with the principles of
structured programming.

One of the responses to elimination of this drawback was
the emergence of Nassi-Schnneiderman diagrams that came
with it, but brought another problem. For representation of
condition it uses oblique lines, which was difficult to display
on formerly common used, alphanumeric displays. In the
eighties this shortage resolved the creation of kopenograms,
which use for its representation colored rectangles.

B. Syntax of kopenograms
The basic structural element of kopenogram is block, which

presents specific element of algorithm. This element is
represented by rectangle, filled with color depending on
meaning of displayed element. Individual elements can contain
other elements in its bodies. It means that elements are nested
into each other, which shows structure of algorithm. The form

of some algorithmic block varies, depending on their meaning.
Individual elements can contain following parts [3]:

Header – forms the upper section of the block and is tinged
with a darker shade of its color. It also contains text
representing name of this element or another form of
description of its meaning.

Body – it is the biggest part of the element and is filled
with lighter shade of appropriate color. It can contain another
blocks. They are on the given level always displayed bellow
each other, which clearly show their sequential execution.

Footer - lower part of the block, also uses a darker shade of
that color is used to represent the end of the body cycle.

These parts are separated by horizontal parting line.
Moreover some elements consist of several separate parts,
which are horizontally or vertically connected (which means
not in the sense described above). Example of kopenogram is
shown on Fig. 1

Fig. 1. Example of kopenogram

C. Basic blocks
As was mentioned, one of the integral and very important

part of kopenograms are colors. They carry the advantage of
easy orientation in algorithm, even from the distance, which
means without having to read the labels of individual elements.
The base consists following four colors [1]:

• Yellow, which shades illustrate methods (procedures/
functions) and recursive calls.

• Green is used for representation of cycles.

• Blue color shows conditional commands and switches.

• Red color is used to tint blocks representing individual
elements, except that in the form of recursive call, as
was mentioned.

D. Another blocks
Blocks described on Fig. 1 are basic, because they fully

comply with structured writing of algorithm. However,
sometimes can occur situations, in which is better to violate
principles of structured design of algorithm. Therefore into
structured programming were added representations of
commands, which on the one hand violate principles of

structured programming, however on the other hand, they can
often simplify whole algorithm [1].

The premature termination of loop (command break or
continue) and premature termination of whole algorithm
(command return) are two of them. Representation of these
elements in kopenogram shows Fig. 2, where the red rectangle
with white triangles oriented to the right represents the break
command, for leaving endless while loop in case of running is
set to false.

Fig. 2. Representation of premature loop termination

The continue statement is usually drawn similarly, except
that the white triangles are facing upwards.

E. Exception handling
With the advent of Java has become a regular part of

beginner programming courses work with exceptions.
Therefore, it was necessary to take this into account in
kopenograms [1]. An exception-handling mechanism can be
viewed as a special composite block, consisting of part, in
which it can be expected, that exception will be thrown, and of
one or more block, which this exception catch and process.
Kopenogram showing the exception handling mechanism is on
Fig. 3.

Fig. 3. Representation of exception throwing and catching

The block, in which can we expect exception throwing, is
colored purple. Its header is white, with black triangles,
illustrating entry into the body of this block, which contain
statements, potentially throwing exception. Deep red block
with yellow text means, that the exception is thrown, which is
processed in an immediately downstream orange block with
white header.

III. IMPLEMENTATION IN BLUEJ
As was indicated in introduction, for the purpose of

improvement support of Architecture First methodology in
BlueJ IDE, was added functionality, which allows users to
show algorithm of the selected method by kopenogram. This
should support especially the last part of teaching, in which is
the more complex algorithmic construction that exceed the
possibilities of integrated code generator are designed. For
better support of Architecture First methodology, this tool is
integrated into BlueJ.

For this purpose local menus of classes and objects
(references to objects) were enriched with item, which invokes
the dialog box, for selecting the method, which kopenogram
should be shown. After selection, user can display kopenogram
of the selected method by pressing the Show kopenogram
button. Each kopenogram is depicted in a separate window. It
allows comparing more algorithms, if necessary (for example
in case of editing code of displayed method).

Kopenograms are created during compilation. Invocation
dialog box from local menu of types in the class diagram and
objects in object bench differs in the set of offered methods:
objects show only instance methods, whereas classes show all.
For that reason it is not necessary to create instance of
appropriate class, in case of need to show kopenogram of its
instance method.

Regarding colors, their meaning is given, however it is
possible to define own colors for individual elements by
editing configuration file bluej.defs.

In addition to elements described above, this tool can also
display blocks, labels and static blocks (which is in its principle
the same as method). An example of complex method, which
contains also empty blocks and a label is shown on Fig. 4.

All of the included images were created in described tool and
they are also example of its output.

Fig. 4. Kopenogram of a complex method

IV. FUTURE PLANS
Generator of kopenograms, described in previous section,

works reliably, however there is still place for several
improvements. One of the first things, that should be resolved,
is situation that in case of long line of code is due to this final
kopenogram too large to fit on the screen.

Currently is this shortage most significant in case of
streams. It is because kopenograms are based on parsing of
abstract syntax tree, which means, that even if user writes
individual statements bellow each other, the tool represents is
as one long command and does not deal with the fact, that user
wrote it differently. However, even after this treatment, still a
situation can occur that final kopenogram will be unable to fit
the screen. Solution for this could be to allow export
kopenogram in form of picture, which is than possible to adapt
the screen.

Another good feature, which will be good to implement, is
possibility of settings, allowing whether to display full syntax
of the blocks and statements, or whether to show only simple
description of meaning of individual elements. It would be
useful in time, when students should not be distracted by
syntax.

However, the most important future improvement, is allow
to debug program using the kopenograms. It means, that
particular element, which is executed, would be highlighted. So
the user would have much more vivid idea, how exactly the

particular algorithm works. And even without the knowledge
of syntax.

V. CONCLUSION
The first section of this paper describes the reason of

creation of Architecture First methodology and mentions its
main principles. It also reminds that we still not avoid design of
more complex algorithm. The next section is about history of
kopenograms and explains reason for its creation. In the rest of
this capture syntax of kopenograms is explained. Third section
describes the tool, which was integrated into BlueJ and which
allows users to display kopenogram of the selected method.
The last capture suggests the future changes and
improvements, which can be expected.

REFERENCES
[1] PECINOVSKÝ R.: Kopenograms and their implementation in

NetBeans. Proceedings of the 38th international conference on software
development. Ostrava 2012. ISBN 978-80-248-2669-1.

[2] PECINOVSKÝ Rudolf: Principles of the Methodology Architecture
First. Objekty 2012 – Proceedings of the 17th international conference
on object-oriented technologies, Praha 2012. ISBN 978-80-86847-63-4..

[3] KOFRÁNEK, Jiří, PECINOVSKÝ, Rudolf, NOVÁK,
Petr. Kopenograms – Graphical Language for Structured Algorithms.
Las Vegas 2012. In: FCS 2012 – Foundations of computer science.
[online] Las Vegas: CSREA Press, 2012, s. 90–96. ISBN 1-60132-211-
9. URL: http://world-comp.org/proc2012/fcs/papers.pdf

[4] PECINOVSKÝ R.: OOP – Learn Object Oriented Thinking and
Programming. Eva&Tomas Bruckner Publishing 2013. ISBN 80-
904661-8-4.URL: http://pub.bruckner.cz/titles/oop

http://world-comp.org/proc2012/fcs/papers.pdf
http://pub.bruckner.cz/titles/oop

	Záložky Wordu
	F02_BreakRepresentation
	F03_ExceptionHandling
	F04_ComplexMethod

