
 Abstract—Most textbooks and courses explain basic object
oriented (OO) constructs in a very similar way. Extensive expe-
rience with teaching different kinds of courses at various levels,
from primary and secondary school through to university and
requalification courses for professional programmers shows
that many students have a difficulty with this traditional ap-
proach. In this paper we show that a modified approach ac-
cording to Architecture First methodology leads to a better un-
derstanding of the basic OO constructs.

I. INTRODUCTION

BJECT Oriented Programming (OOP) is a fundamental

paradigm of modern programming languages. Over the

last 10 years we have been teaching OOP at computer clubs

for students from primary schools as well as at high schools,

grammar schools and universities. At the same time we have

been teaching industry-based courses to retrain professionals

from structured programming paradigm to OOP and to

improve their knowledge and skills. As a result, we have

experience with teaching a range of students from complete

beginners to students with advanced knowledge of

programming obtained from textbooks or other courses.

O

Both beginners and advanced programmers experience

problems with mastering certain object oriented constructs.

We have succeeded in modifying the explanation of OO

constructs so that beginners improve their understanding and

advanced programmers learn to avoid poor programming

habits acquired as a result of incorrect understanding of

OOP.

A. Summary of perceived problems

Almost all textbooks explain the basic object oriented

constructs in a way that is more or less borrowed from older

C++ textbooks. However, such an explanation involves

many definitions that are difficult to understand for the

beginners. From their point of view these constructs are

often inconsistent and confusing.

In addition to these basic constructs several secondary

constructs are explained as new, but using a slightly

 This paper describes the outcome of research that has been
accomplished as part of research program funded by Grant Agency of the
Czech Republic Grant No. GACR P403-10-0092 and by the grant FR—
TI3/869 and by the sponsorship of the ICZ a. s. company.

modified explanation, we can explain the secondary

constructs as natural extension of the basic ones. Moreover,

we can refer to the constructs that students have already

mastered. This slight modification can improve the

understanding of both sets of constructs. Furthermore, this

decreases the number of problems that the students may

encounter when using these constructs in their programs.

Our experience has shown that it is useful to explain the

following topics in a slightly different way than textbook

authors have done so far:

• what is an object,

• the difference between objects and classes,

• the concept of the interface,

• constructors and construction of objects,

• the keyword this,

• class inheritance.

In the following sections we deal with each of the above

mentioned topics and show the modification of explanation

that proved useful in our attempts to improve understanding

of the subject matter.

We have compared our method with textbooks [1], [2],

[4], [5], [6], [8], [9], [10], [11], [15], [16], [22], [23], [24],

[26], [27] and [28]. We can divide these textbooks into three

groups:

• [2], [9], [10] and [24] – mainly concentrate on

explanation of the best programming practices. They
intend to teach how to think and how to program in a true
object oriented way.

• [1], [5], [8], [11], [22], [28] – mainly teaching the

language with its APIs. Teaching the art of programming
is secondary.

• Remaining texts claim that they teach OOP, however the

style of explanation and the discussed topics indicate that
they belong to the second group.

We note that the objective of this article is not to review the

above mentioned textbooks, but to use them as examples of

the traditional way of explanation of object oriented

constructs and compared it with the proposed approach. We

are not going to enumerate the explanations of the topics in

How to improve understanding of OOP constructs

Rudolf Pecinovský
University of Economics Prague

Department of Information Technologies
Churchill sq. 4, 130 00 Prague 3

Czech Republic
Phone: +420 603 330 090

Email: rudolf@pecinovsky.cz

Jiří Kofránek
Charles University in Prague
Laboratory of Biocybernetics

Department of Pathophysiology
U nemocnice 5, 128 52 Prague 2

Czech Republic
Phone: +420 777 686 868

Email: kofranek@gmail.cz

Preprints of the 2
nd Computer

Science Education Research Conference pp. 19–24

ISBN

c©2012 19

the above mentioned textbooks, but we focus on

summarizing these approaches.

II. EVERYTHING IS AN OBJECT

The textbooks explain the term object in two ways:

• most of them explain it using real world examples,

• others do not explain it and assume that it is a generally

known term which does not need a special explanation.
In both cases students meet similar problems. Their general

understanding is that object is something tangible; they have

not come across the idea that objects are used also for

representing abstract ideas (e.g. beauty, size, direction,

connection, interruption, calculation, etc.). If they meet such

objects in a program for the first time, it will take some time

until they accept the fact that abstract ideas can be also

represented by objects.

A. Recommendation

We have discovered that it is useful to explain to students

at the very beginning that in object oriented programming

we treat as an object everything that can be expressed by a

noun, including the abstract terms mentioned above. Some

students may be confused by it for a while, and they find it

difficult to describe an abstract term by means of an object.

Therefore, we explain here that in programs each object is

represented with a set of data items (attributes) that

describes the object. From the program’s point of view the

object is just this set of attributes and it does not matter

whether the set represents a physical object or an abstract

idea.

Most students quickly understand that besides the

attributes that characterize cars, chairs, animals or other

physical objects they can equally define attributes that

characterize colors, directions, beauty, connections and

other abstract terms. To facilitate this understanding, we

have to use objects of this kind often from the very

beginning of the course. Among suitable candidates for

these abstract objects are, for example characteristics of

graphical objects such as colors or directions.

III. CLASSES VERSUS OBJECTS

In most textbooks the class is explained as an abstraction

describing some properties of a group of objects, which we

call instances of their parent class. Authors often explain

that a class serves as a blueprint or a template for the objects

that the program uses. Some authors note that we can look at

a class as a factory capable of creating objects on demand.

Students sometimes struggle with understanding the

difference between classes and objects, especially when we

introduce static attributes and methods.

A. Recommendation

Our experience shows that students understand this topic

better, when we explain that classes are also objects (we

treat everything that can be named by a noun as an object,

therefore classes should also be treated as objects).

However, classes are special objects with special properties:

• They are the only objects that can create new objects

called instances of their parent class. When advanced
students complain that other objects can also create new
objects, we explain, that these “other objects” can only
return objects that are originally created by a class. A new
object can be created only by its parent class.

• Classes define two types of attributes (fields):

• First type of attributes is marked with the modifier

static. We can interpret static attributes as attributes

that do not move and stay “statically” in their class.

• The attributes that are not marked with the modifier

static, declare attributes for instances of the class.

Each created instance takes its own copy of these
attributes.

• Similarly, classes define two types of methods:

• Methods marked with the modifier static belong to

the class and can use directly only members (attributes
and methods) of their class. Members of instances and
other classes should be qualified by their owner.

• Other methods belong to instances. They have

(similarly to constructors) a hidden constant parameter
this, which is initialized by a reference to their

instance. Although the parameter this is not included

in the list of parameters, it can be used in the body of a
method.

These instance methods can use the members of their

instance and its class directly. (We observe that the

class behaves as if it were a proper parent and allows

all of its instances to use its (i.e. static) attributes and

methods.) Other members should be qualified by their

owner.

It is quite astonishing how this small difference in

explanation helps students to understand the term class and

how it helps them to solve some more complex problems.

This explanation is (unintentionally) endorsed also by

IDE BlueJ, which we use in our introductory programming

courses. In BlueJ we work with classes and objects in a very

similar way. Classes as well as their instances are

represented by rectangles, whose context menus display all

messages that can be sent to the corresponding class/object.

The only difference is that classes are shown in the class

diagram while instances are shown in the object bench. Thus

students find this explanation consistent with their

experience.

Introduction of classes as a special kind of objects helps

also in the explanation of other topics:

• Students have no problems with understanding the

difference between class and instance attributes and
methods, and they can use both almost from the beginning
of the course.

• Students understand more easily the rules for loading a

class by a ClassLoader and it helps them later to

understand better the principles of inheritance.

20 PREPRINTS OF THE CSERC. WROCŁAW, 2012

IV. CONSTRUCTOR AND PARAMETER THIS

Another topic whose understanding and use sometimes

causes problems are constructors and the keyword this.

Almost all textbooks follow the original description

published in [25], which says: “Constructor is identified by

having the same name as its class.” The text does not

differentiate if the constructor is a method.

The above mentioned textbooks differ in the explanation

of what is a constructor. [1], [9] and [10] explain that a

constructor is not a method and therefore it may not return

anything. Accepting this explanation leads us to assign the

responsibility for returning the new object to the new

“operator”1.

Most authors define a constructor as a special kind of a

method having the same name as its class. However, most of

them do not explain why the reflection, exceptions and

almost all debuggers use for constructor the name <init>.

They either ignore it (e.g. [4], on page 927) or they do not

discuss the difference between this name and the name

introduced at the beginning of the course (e.g. [8]).

Taking a constructor as a method with the name of its

class and not declaring the type of its return value, we

should introduce a new construct this(…) serving for

invoking another constructor and transfer the responsibility

for the initialization of the created object to it.

A. Recommendation

When we look at the constructor syntax we can interpret

it in two ways:

• A method identified by its class name and declaring no

return type.

• A method identified by the empty string and declaring its

class as a return type.
The latter explanation is closer to the actual implementation.

It appears that it is more efficient to explain constructors in

this way and explain them as methods with special

properties:

• In Java the internal name of constructors is <init>.

However, this name violates the rules for identifiers and
therefore Java authors decided to declare constructors in
source code as “empty-string” methods, or more precisely
as methods, whose names are empty strings.

• A constructor must return a reference to the newly created

object. This reference is obtained from the hidden
parameter this, which is initialized by the caller.

Because the returned value is known a priory, the
language syntax theoretically does not need the statement
return this; In fact, we do not write it, it is inserted

by the compiler on our behalf to prevent mistakes.
After the above explanation students understand better the

explanation of the following syntactic rules. We explain:

• Construction of a new object proceeds in two steps:

1 De iure the new is not an operator in Java, however, many teachers

and programmers understand it so.

• First, the new “operator” is called with a parameter

defining the name of the class, whose instance we want
to create (the parent class). This parameter determines
the size of the memory allocated for the created object
and it also specifies other information needed for the
creation of the object (e.g. the address of the VMT).
Additionally, the allocated memory is filled with zeroes
and/or compile-time constants.

• Second, the “empty-string” method (constructor) is

invoked with argument this pointing to the allocated

memory and possibly also with other arguments. The
constructors’ task is initializing this memory so that it
correctly represents the object.

We can outline the described behavior by writing the

statement in two lines (here, due to narrow columns,

they are four):
new ClassName

//Invoking new - memory allocation

(/*parameters*/);

//Invoking the contructor

• As we have noted, the constructor can be used only for

initialization of the newly allocated memory. If it is
invoked by another constructor, this invocation must be
the very first statement in its body. Nothing may precede
it, not even an opening brace.

• If a constructor delegates its responsibility for initializing

the object to another constructor, it should qualify this
invocation by this as we are used to doing with normal

methods. However, in this case we do not write the dot.
So instead writing
this.(/*parameters*/);

we write only
this(/*parameters*/);

When we explain constructors in this way, students more

easily understand the this() statement as a means for

delegating the responsibility for initializing the object and

they also understand what the <init> appearing in

exception messages or debugger windows means.

This explanation establishes a good basis for the

following explanation of static initializers and invocation of

super constructor. Everything fits logically together.

When the above explanation is used students sometimes

complain that the object is not created by the constructor but

by the new “operator”. Here we can use the following

analogy: “Who makes cups?” They answer: “A potter.”

Then we explain that the allocated memory serves similarly

as potter's clay and that constructor processes this memory

similarly as the potter processes the clay. Using this analogy,

we regard the constructor as the author of the created object.

V. INHERITANCE

The most common problem with teaching inheritance is

that it is taught too early. Some textbooks deal with it imme-

diately after the first introduction to objects and classes.

RUDOLF PECINOVSKÝ, JIŘÍ KOFRÁNEK: HOW TO IMPROVE UNDERSTANDING OF OOP CONSTRUCTS 21

For now we ignore that if we want students to acquire the

knowledge of the OO paradigm well, we should not explain

the concept of inheritance until we explain the concept of

interface (a general interface as well as the Java construct

interface). In addition, we should not only teach how to

implement an interface, but also how to incorporate it in

our design. These problems are discussed in [17], [18] and

[19] during explanation of the Design Patterns First

methodology (predecessor of the Architecture First

methodology). From the textbooks mentioned at the

beginning of this paper only [9] and [27] first explain the

interface and later the inheritance.

When explaining inheritance all the mentioned textbooks

explain that a child should represent a special kind of its

parent. However, they do not put the same emphasis on it.

Mostly, they mention this rule only at the beginning of the

explanation of inheritance and then they show only how we

could use the inheritance to avoid writing additional code.

Unfortunately, the majority of programming textbooks do

not present bad examples of inheritance usage at all. This

would warn the reader against a bad design early.

After such an explanation the students often remember

only that inheritance serves primarily for reusing code and

they also use it only for this purpose.

A. Three kinds of inheritance

At the beginning of explaining class inheritance we

should introduce the three kinds of inheritance ([14]):

• Inheritance of interface (in [14] subtyping) occurs when

a child inherits the entire interface from its parent, i.e. the
signature as well as the contract. As a consequence, an
instance of a subtype can stand in for an instance of its
supertype. However, a compiler ensures the inheritance of
the signature only. Maintaining the contract is the
programmer’s job. Subtype implementation details are
totally irrelevant; all that matters is that it has the right
behavior so that it can be substituted.

• Inheritance of implementation (in [14] subclassing) – it

is an implementation mechanism for sharing code and
representation. The subclass inherits all the
implementation from its superclass (it is the compiler’s
job). The subclass can change the behavior that does not
fit its requirements, and it can also add new members.
Here, the danger is that the overridden code and/or new
members violate the parent’s contract.

• Natively understood inheritance (in [14] the “is-a”

relationship) talks about our assumption that one kind of
object is a special case of another. Here an inconsistence
may appear when the implementation differs from our
inherent assumption. E.g. mathematicians tell us, that a
map is a special kind of a set – it is a set of ordered pairs
(key, value). However, in the java standard library the set
is implemented as a special kind of a map.

B. Recommendation

There are two recommendations:

1) Postpone the explanation of class inheritance as late as
possible

The reason for postponing this explanation is to offer

enough time for exercising usage of interfaces. Students

should learn not only how to implement a given interface,

but they also should master how to recognize situations,

where incorporating an interface in their design is useful.

At this point it is useful to introduce the Decorator design

pattern and prepare at least one project, where using this

pattern is more useful than the frequently (and improperly)

used inheritance of classes. There are two reasons why to

introduce this pattern:

• Advanced students who mastered inheritance in a

previous course (or from a textbook) are provided with
situations where class inheritance is not the best solution.
It also helps us to improve students’ attention to the
ongoing explanation.

• We prepare the background for the following explanation

of class inheritance.
If our lessons follow the Architecture First methodology

([17], [18] and [19]), an introduction of the Decorator

design pattern does not present a problem since the students

already know several design patterns and they understand

their importance.

2) Explain class inheritance as an automated
implementation of the Decorator design pattern

As the next step we inform students that in addition to the

inheritance of interface (languages construct) there is

also class inheritance. This inheritance combines the

inheritance of the parent class interface with the inheritance

of the parent implementation. We explain that the

inheritance of implementation is internally handled as if the

subclass were designed according to the Decorator design

pattern. In other words, the inheritance of implementation is

de facto an application of the Decorator design pattern in

which the decorator (child) acquires both the

implementation and the interface from the decorated object

(parent). The compiler prepares a hidden constant attribute

named super, in which a reference to the decorated object

is held. Additionally, the compiler also ensures the

automatic delegation of all inherited methods to super.

For the decorated “super” object we introduce the term

parent subobject. In contrast to the standard decorator a

constructor of a child does not take its parent (super) as a

parameter, but it creates the parent subobject by calling a

parent’s “empty-string” method (a constructor):
super (/* parameters */);

where, similarly to the statement this(), we omit the dot.

We explain that the parent subobject must be created

before the rest of the child object is initialized to allow the

rest to use the inherited members. So the child constructor

has two options:

• to delegate its responsibility for initialization to one of its

peers by the statement this() or

22 PREPRINTS OF THE CSERC. WROCŁAW, 2012

• to start with creating the parent object, i.e. calling its

constructor by the statement super().

The only exception is the situation, when we want to call the

parameter-less parent constructor – then the compiler is able

to insert its call for us behind the scene.

So far we did not to create the parent object in our classes

explicitly, because the compiler implicitly used the

parameter-less parent constructor. We may immediately

show, that identical behavior can be obtained by adding the

super(); statement into our original classes.

Our experience shows that the explanation following

these rules is much more comprehensible for the students

than using the traditional approach. Especially, the concept

of overriding, which was difficult to understand for many

students, is now clear and intelligible for most. Several

programmers attending our retraining courses have

commented that thanks to this explanation they finally fully

understand the class inheritance.

We should not forget to remind students that the three

kinds of inheritance must not interfere. They should fit

together. In case of class inheritance, the compiler is able to

ensure only the inheritance of the implementation and the

signature. The inheritance of the contract is the

responsibility of the programmer.

VI. DESIGN OF ALGORITHMS

In the OOP era of the present times, it tends to be

forgotten sometimes that the design of rather complex

algorithms may be ahead of us at the end of object analysis.

Several graphical languages are available for their

representation. The most often used are flowcharts, UML

activity diagrams and Nassi-Schneiderman diagrams.

However all of them have some drawbacks. Flowcharts and

UML activity diagrams do not force using of structured

algorithmic constructs. Nassi-Schneiderman diagrams use

oblique lines, which degenerate the space for conditions of

condition statements.

Our experiences proved as the most effective graphical

tool kopenograms ([12], [13]) – a handy tool for clear

graphical representation of the structure of algorithms. They

have found long-term application particularly in teaching

programming classes. These are a convenient supplement of

UML diagrams used to represent algorithmic structures.

A. Recommendation

Use kopenograms as the graphical tool by explanation of

complicated algorithms and algorithmic constructs.

VII.RESULTS AFTER APPLICATION

OF THE PRESENTED SUGGESTIONS

In the first semester all students at Department of

Information Technologies in University of Economics have

mandatory lessons on Fundamentals of programming. The

students’ average results are not excellent because most of

them tend to study IT management and they take the

mandatory programming as an inevitable duty. Therefore

they do not want to task their mind with an intensive

thinking about this topic and they try to find out simple and

straightforward guidelines for solving their assignments.

Tables 1 and 2 show how the students in groups of the

first author were successful in past years. The first table

shows all students, who began to study in the given year.

Table 2 does not involve students, who found out the school

too difficult and left it. So the results in the second table are

a little higher, however we have started to watch this statistic

since 2008.

Row headers show start time of a lesson of a particular

group. In 2005, when the first author started to teach at the

faculty (before he had presented mainly to professional

programmers), he had only one group. In following years he

presented to three to four groups. After the first year we

became frightened of the low success and lowered our

demands, however later on we realized it was not the right

way and we started to improve our methodology.

As we have said the students’ results are not excellent – it

oscillated around 50 %. However, after introducing of the

described modifications the results significantly increased

without reducing the demands. It increased to 75 % and if

we do not involve the students, who left the school, it

increased up to 83 %. In the next year this level was kept. In

addition we observed that these groups’ students obtained

better skills than graduates of other groups. However this

phenomenon was not statistically processed.

VIII. SUMMARY

This paper was written in response to problems that many

students have experienced with understanding the object

oriented concepts. It shows that by changing the way of

explaining these OO specific constructs we can improve the

comprehensibility of these concepts.

It recommends the use of objects that represent abstract

concepts from the very beginning of explanation.

Subsequently, the class should be explained as a special kind

of object with special features – e.g. that it is the only object

that can create new objects – its instances.

Further, it recommends explaining the constructor as a

method whose name is an empty string and which can be

used only for initializing a newly allocated memory. It

shows how this change makes some constructs more logical.

In the next chapter it concentrates on inheritance. It

suggests postponing the explanation of class inheritance

after the explanation of interface, and simultaneously

preceding it by the explanation of the Decorator design

pattern. The Decorator design pattern facilitates

understanding of the concept of class inheritance. In

addition, the paper recommends explaining the three kinds

of inheritance and emphasizing that the compiler ensures

only the inheritance of signature, while ensuring the correct

inheritance of the contract is the programmer’s

responsibility.

Finally the paper shows that by incorporating the

suggestions into the explanation the students’ results in the

RUDOLF PECINOVSKÝ, JIŘÍ KOFRÁNEK: HOW TO IMPROVE UNDERSTANDING OF OOP CONSTRUCTS 23

observed groups significantly increased. This statistic

corroborates my previous feeling from the courses, where

the methodology was tested.

TABLE 1:

AVERAGE RESULTS – ALL STUDENTS

2005 2006 2007 2008 2009 2010 2011

07:30 53% 61% 26% 53% 20% 80% 100%

09:15 65% 45% 65% 47% 70% 64%

11:00 68% 47% 28% 50% 84% 80%

12:45 58% 61% 68% 57%

Average 53% 65% 44% 49% 48% 75% 76%

Fig. 1: Average results – all students

TABLE 2:

AVERAGE RESULTS WITHOUT STUDENTS LEFT THE SCHOOL

2008 2009 2010 2010

07:30 56% 25% 86% 100%

09:15 72% 47% 88% 64%

11:00 29% 50% 84% 89%

12:45 65% 76% 57%

Average 53% 50% 83% 78%

ACKNOWLEDGMENT

This paper describes the outcome of research that has

been accomplished as part of research program funded by

Grant Agency of the Czech Republic Grant No. GACR

P403-10-0092 and by the grant FR—TI3/869. Authors also

thank for significant sponsorship the ICZ a. s. company.

REFERENCES

[1] Arnold K., Gosling J., and Holmes D. 2005. The Java™
Programming Language, Fourth Edition. Addison Wesley
Professional. ISBN 0-321-34980-6.

[2] Barnes D. & Kölling M. 2004. Objects First With Java: A Practical
Introduction Using BlueJ (2nd Edition). Prentice Hall. ISBN
978-0-131-24933-2.

[3] Buchalcevová A. 2008 Buchalcevová, Alena. Where in the curriculum
is the right place for teaching agile methods? Proceedings 6th ACIS
International Conference on Software Engineering Research,
Management & Applications (SERA 2008). Prague : Copyright, 2008,
p. 205–209. ISBN 978-0-7695-3302-5.

[4] Deitel H. M. & Deitel P. J. 2007. Java How to Program, 7th Edition.
Prentice Hall, ISBN 978-0-132-22220-4.

[5] Eckel B. 2007. Thinking in Java (3rd Edition). Prentice Hall, ISBN
978-0-131-00287-2-6.

[6] Fain Y. 2004. Java Programming for Kids, Parents and
Grandparents. Smart Data Processing. ISBN 0-9718439-5-3. DOI=
http://www.csd.abdn.ac.uk/~tnorman/teaching/
CS1014/information/JavaKid8x11.pdf

[7] Gosling J., Joy B., Steele G. & Bracha G. 2005. Java™ Language
Specification, Third Edition. Addison Wesley. ISBN
978-0-321-24678-3. DOI= http://java.sun.com/docs/
books/jls/download/langspec-3.0.pdf

[8] Horstman C. S. & Cornell G. 2007. Core Java™, Volume I –
Fundamentals (8th Edition). Prentice Hall PTR. ISBN
978-0-132-35476-9.

[9] Horstman C. S. 2007a. Big Java (3rd Edition). John Wiley and Sons.
ISBN: 978-0-470-10554-2.

[10] Horstman C. S. 2007b. Java Concepts for Java 5 and 6. John Wiley
and Sons. ISBN 978-0-470-10555-9.

[11] Horton I. 2002. Beginning Java 2. Wrox. ISBN 978-0-76454-365-4.
[12] Kofránek J., Pecinovský R., Novák P. 2012. “Kopenograms –

Graphical Language for Structured Algorithms.” Proceedings of the
2012 International Conference on Foundation of Computer Science.
WorldComp 2012 Las Vegas. CSREA Press. ISBN 1-60132-211-9.

[13] Kopenogram web page. http://www.kopenogram.org.
[14] Lalond W. & Pugh J. 1991. Subclassing ≠ Subtyping ≠ IsA. Journal of

Object-Oriented Progrtamming. Vol. 3, No. 5.
[15] Liang Y. D. 2006. Introduction to Java Programming:

Comprehensive Version (6th Edition). Prentice Hall. ISBN
978-0-132-22158-0.

[16] Morelli R. & Walde R. 2006. Java, Java, Java, Object-Oriented
Problem Solving (3rd Edition). Prentice Hall, ISBN
978-0-131-47434-5.

[17] Pecinovský R., Pavlíčková J. & Pavlíček L. 2006. “Let’s Modify the
Objects-First Approach into Design-Patterns-First.” Proceedings of
11th Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE'2006). Bologna, ACM Press, ISBN
1-59593-346-8. DOI = http://edu.pecinovsky.cz/papers/

[18] Pecinovský R. & Pavlíčková J. 2007 “Order of explanation should be
Interface – Abstract classes – Overriding.” Proceedings of 12th
Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE'2007). Dundee, ACM Press. ISBN: 978-1-
59593-610-3. DOI = http://edu.pecinovsky.cz/papers/

[19] Pecinovský R. 2009a. “Early Introduction of Inheritance Considered
Harmful.” Proceedings of Objects 2009, Hradec Králové. ISBN 978-
80-7435-009-2. DOI = http://edu.pecinovsky.cz/papers/

[20] Pecinovský R. 2009b. “Using the methodology Design Patterns First
by prototype testing with a user.” Proceedings of IMEM 2009, Spišská
Kapitula. DOI = http://edu.pecinovsky.cz/papers/

[21] Pecinovský R. 2010. Learn Object Oriented Thinking and

Programming. – Translation of the original book: OOP – Naučte se
myslet a programovat objektově. Computer Press 2010. ISBN
978-80-251-2126-9. English version to be published.

[22] Schildt H. 2004. Java: The Complete Reference, J2SE 5 Edition.
McGraw-Hill Osborne Media. ISBN 978-0-07-223073-4.

[23] Schildt H. 2005. Java: A Beginner's Guide, Third Edition.
McGraw-Hill Osborne Media. ISBN 0-07-223189-0.

[24] Sierra K. & Bartes B. 2009. Head First Java, 2nd Edition. O'Reilly
Media. ISBN 978-0-596-00920-5.

[25] Strustrup B. 1991. The C++ Programming Language, 2nd Edition.
Addison-Wesley Publishing Company. ISBN 0-201-53992-6.

[26] Winder R. & Graham R. 2006. Developing Java Software, 3rd
edition. John Willey & Sons, Ltd. ISBN 0-470-09025-1.

[27] Zakhour S., Hommel S., Royal J., Rabinovitch I., Risser T. & Hoeber
M. 2006. The Java Tutorial: A Short Course on the Basics, 4th
Edition. Prentice Hall PTR. ISBN 978-0-321-33420-6.

[28] Zukowski J. 2002. Mastering Java 2. Sybex. ISBN
978-0-7821-4022-4.

24 PREPRINTS OF THE CSERC. WROCŁAW, 2012

