
Evaluation of Student Assignments
Rudolf Pecinovský

University of Economics Prague
Department of Information Technologies

Churchill sq. 4
130 00 Prague 3

rudolf@pecinovsky.cz
+420 603 330 090

ABSTRACT
One of the bothersome tasks in programming education is evalua-
tion of student assignment solutions and homeworks. Because,
this activity is time consuming and mostly not interesting. The
paper shows how we can automate the evaluation of handed in so-
lutions by using Design Patterns First methodology. It first sums
up the basic characteristic of the Design Patterns First methodol-
ogy and shows, why its use facilitates the designing of the as-
signments and subsequent evaluation of handed in solutions. It in-
forms about a “micro library” used by author for this purpose. In
the next part it shows using three examples taken from a basic
course of Java how it is possible to make the evaluation signifi-
cantly more effective.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Design, Languages

Keywords
Objects First, Design Patterns, Software Engineering Education,
Design-Patterns-First, teaching theory.

1. INTRODUCTION
The preparation of student assignments and especially subsequent
evaluation of their solutions belongs to the less pleasant parts of
the teacher’s activities. If the all students had the same assign-
ments, then there is a danger that the advanced students will
transmit their solutions to their colleagues, who can make several
simple replacements to make the discovery of the transmission
difficult. On the other hand different assignments for each student
complicate the evaluation of their solutions.

The standard evaluation technique is relatively laborious and often
boring: the teacher has to run every program, give it some data
and check that the program reacts as required. Each of such
evaluations can take time in the order of minutes. Rarely do we
clip this evaluation time to a few seconds.

Some teachers therefore try to prepare assignments, whose solu-
tions can be easily evaluated. However this attempt often ends
with assignments asking for result values written somewhere they
can be “checked by eye”. It still remains necessary to run each
program and look somewhere at the results. The evaluation time

therefore is linearly dependent on the number of evaluated solu-
tions.

It has certainly occurred to many readers that a programmer could
automate repeated and frequent tasks. However, for such auto-
mated evaluation we need to collect all solutions in one place and
then discover the “key classes” from the auxiliary ones and ask
the “key classes” for their answers in the right way.

For common types of assignments as met in textbooks and courses
such automation is therefore reasonably solvable only for assign-
ments requesting one source code and communication through
standard input and output. Once we want a more complicated so-
lution our automated evaluation can meet some problems.

As I signalled in the abstract, when we apply the Design Patterns
First methodology, we have got the resources that allow us to
automate evaluation of even relatively complicated solutions from
almost the very beginning. Let’s have a look at these resources
and the mentioned methodology in a little greater detail.

2. BASIC PRINCIPLES OF
METHODOLOGY DESIGN PATTERNS
FIRST

The reason for developing the methodology Design Patterns First
was the inability of other methodologies to keep some basic peda-
gogical principles, especially the Early Bird pedagogical pattern
([1]) that says: “Organize the course so that the most important
topics are taught first.”

2.1 Interface
One of the basic principles of modern programming is Program-
ming to an Interface, not an Implementation. By applying this rule
to programming in Java the construct interface is very often used.
However other methodologies explain it somewhere near the end
of the first or even second course. So the students don’t have suf-
ficient opportunity to really learn it and no time to digest it and to
learn how to incorporate it into their designs.

The methodology Design Patterns First incorporates the explana-
tion of the interface into the first few lessons. The early incorpora-
tion of this subject offers students not only sufficient area to
closely familiarize with it but simultaneously it offers teachers
broad possibilities of how to prepare assignments whose evalua-
tion can be automated. These possibilities are not achievable using
other methodologies.

2.2 Design patterns
The next noticeable feature of modern programming is an inten-
sive use of design patterns. Design patterns came to public aware-
ness only in the second half of the nineties after [4] was pub-
lished. Their acceptance grew very quickly and now their knowl-
edge is considered one of the programmers’ key skills.

The very early introduction of design patterns and its intensive use
both in various examples and in assignments is the second main
principle of the described methodology. This principle is consid-
ered so important that it gives its name to the whole methodology.

2.3 Test driven development
The third principle that this methodology aims to instil to students
from the very beginning is the importance of tests and the profit-
ability of their definitions even before the development of the
tested program.

In early lessons the teacher formulates assessments as the test
classes with tests for the required solution. In later lessons the
preparation of tests is the first step in solving problems. The stu-
dents can not start the next step before the teacher agrees with the
scenario of the planed program defined by the test.

Using this approach students very soon meet the advantages of the
programming style whose only goal is to fulfil the tests prepared
in advance. This increases the probability that students embrace
this progressive method and will use it in their future work.

3. UTILIZING OF THESE PRINCIPLES
BY CREATING ASSIGNMENTS AND
NEXT EVALUATION OF SOLUTIONS

Let’s have a look how the early explanation of the above men-
tioned principles can be projected into homework and other as-
signments. I start with my favourite saying:

The program that is almost running is like the plane that is almost
flying.

In other words: we evaluate only such parts of handed in solutions
that are really running. It is not important how large a part of the
project was developed. The only work that the student can defend
is the part of program that really runs.

In the early lessons I prepared assignments containing a test class
with a set of tests the solution has to fulfil. The students’ task is to
define the class implementing the given interface and fulfilling all
tests.

The fact that instances of classes created by students complete the
test proves the correctness of the handed in solution. However it
doesn’t facilitate the evaluation very much. There remains the
duty to run the test for every solution and find out the degree of
fulfilment of the requirements.

We could automate the evaluation of handed in programs by de-
fining some rules for class names and preparing a program to
search for classes with such class names, create their instances and
test the behaviour of these instances.

The weak point of such automation is the remarkable inability of
students to keep even the simple conventions. We need to set
“conventions” checkable by compiler or test program. Therefore

we would incorporate in the checking program a part that checks
for the keeping of these conventions. Fortunately this task is rela-
tively simply solvable.

The automated evaluation of the handed in solutions is signifi-
cantly simpler at the moment, when one of the requested features
is an implementation of the given interface, because in such a case
the compiler checks the keeping of this convention for us and we
can concentrate on the proper evaluation of the solution.

I use for the automated evaluation of handed in solutions the mi-
crolibrary containing one interface and one class:

• The interface ITest<T> characterises classes, where we define
the test of the handed in solutions. The interface declares only
one method test(T). Its parameter is the tested object that is
an instance of a class implementing the interface T or class ex-
tending the class T. This method tests the obtained instance
and writes somewhere the message describing results of this
testing.

• The searching class Tester whose instances have to find all
the classes whose instances should be tested, create their in-
stances and pass them for testing. The constructor of this class
has two parameters:

 a class-object of the interface that should be implemented
by tested classes or a class-object of the class that should
be extended by tested classes,

 an instance of the testing class that is able to test the ob-
tained objects.

We run the search for classes for testing by calling the method
verify(Class<T>,ITest<T>) that searches the project folders
for tested classes, creates an instance of each found class and
passes this instance for testing to the object obtained as the
second parameter.

So the only activity that takes some time is the creating of the test
class. Students save their solutions into a given package/folder
(possibly each one into subpackage of his/her own) and then it
remains for us only to run the prepared test program that checks
and evaluates everything. The proper evaluation is then a few sec-
onds (or for bigger number of students minutes) task.

4. VARIANT ASSIGNMENTS AND
AUTOHOR IDENTIFICATION

It’s a known fact that a common assignment invites the less ex-
perienced students to copy the solution from the more experienced
ones. We can simply defend against these favourite vices by dif-
ferent assignments for each student or for small groups of stu-
dents. The common property of all assignments is the imple-
mented interface or parent class.

It could seem at the first look that different assignments will make
the evaluation more complicated. By the appropriately selecting
assignments this complication is negligible. One of the possible
ways to solve the difference in assignments is to give to every as-
signment an identifier. In the implemented interface or parent
class we declare an abstract method for returning the identifier of
the solved assignments. Our test class can be supplemented by an
auxiliary class, which offers a method of obtaining an identifier of

the solved assignments and it returns a set of tests verifying the
handed in solution.

In a similar way we can solve the solution’s author identification.
The implemented interface or parent class can declare an abstract
method for returning the name (or some other identifier) of the au-
thor of this solution. By this identifier we are able to identify not
only the author of the given solution, but also that the student
solved the right version of the assignment.

5. TAKING OF FOREIGN SOLUTION
Now I digress from the subject for a while and touch on taking of
the solution from colleagues or order a complete solution for
money. We have to admit that preventing students from the taking
of foreign solutions is complicated and in homeworks almost im-
possible. Therefore I think, that it is more profitable to accept this
possibility and modify the way of handing in solutions in order to
force students to study the handed in solution.

I solve this problem in such a way that I proclaim, that I don’t
care about the source of the handed in solution, but I want the stu-
dents know this solution as well as if they designed it alone. The
submission the solution is therefore connected with a duty to mod-
ify the solution in a given way or correct there some artificially
created error. This process we call the defence of the handed in
solution.

I explain to students that almost every programmer takes at some
time a foreign solution, however only the gambler incorporates in
his/her program a module, whose functionality he/she has to guar-
antee without understanding it.

My experience has shown that many students believe that it is suf-
ficient to let the author explain the functionality of the program
the night before its presentation. From this explanation they get
the feeling that they understand the program, but they don’t real-
ize that understanding the explanation is a significantly different
level of understanding than is the level needed for successfully
modifying the program.

Every year therefore it happens that some students underestimate
this difference. They bring their solution, but when they came to
modify it a little, they wonderingly discover that the program they
understood yesterday evening and supposed it to be clear, is now
strange and full of un-understandable constructions that they are
not able to correct or modify.

6. EXAMPLES
Let’s return to assignments and evaluation of their solutions.

6.1 Five
The first task is creating a simple graphical object consisting of
several other graphical objects. Such a graphical object can be e.g.
the classical dice. The students get three classes:

• The interface that should be implemented by their solutions
and that declares simple methods for changing the position
and the size of the created instance plus above mentioned
methods returning author’s ID or name.

• The library class for generating the assignments which offers
a method that gets the student’s ID as the parameter and then
returns corresponding version of assignment.

Figure 1: The Five

• The test class whose instances test that the instances of the
created class correctly implements all methods declared in the
assignment.

The library class is simple: its method finds out the hash code of
the given ID and derives from it the initial position of the die and
the shapes forming its “points”. The differences among particular
assignments are small, but for our purpose they are sufficient.

6.2 Calculator
As the second example I introduce my favourite calculator. The
students’ task is to create a part of a larger project – the class rep-
resenting its CPU.

Their concrete task is to create a class implementing the interface
ICPU that declares the requested behaviour or the created CPU.

The remaining parts of the project are prepared by the teacher.
Here belongs the class RealGUI that takes care about the user in-
terface, the class TestCPU for testing of the created CPUs and the
class Version that generates assignments and test steps for testing
this assignment.

Figure 2: The Calculator

In this case the assignment is not generated only according to the
student’s ID. In addition to his/her id each student enter the level
of difficulty of the generated assignment. Naturally solving of the
assignment with higher level of difficulty yields also higher level
of obtained points.

The class Version returns the assignment as a list of caption on
buttons that the student’s CPU has to serve. The student than pro-
grams the particular functions (that means responses to pressing of

particular buttons). In every moment of his/her development the
student can create an instance of the class TestCPU and ask it what
function of the developed class work and what not.

The instance of test class works in such a way, that it asks the stu-
dent’s class for the student’s ID and level of difficulty. Than it
asks the class Version for a corresponding assignments and list of
test steps. Thereafter it connects to the student’s class as a GUI,
sends it a sequence of messages about pressing the calculator but-
ton and after each message gets the answer of the student’s class
and compare this answer with the requested one (it is a part of the
test step).

After solving the assignments the students save their solutions into
a specified folder with remaining classes belonging to the project.
Then I run my “mass test” giving them the class object of the in-
terface ICPU and an instance of a test class implementing the inter-
face ITest. It checks all 60 assignments in one minute and save
the protocol into the specified file.

Students, whose solutions passed the “mass test” may come to de-
fend their solution. Here they get some small additional assign-
ments how to modify their solution. When they finish the modifi-
cation, they receive the appropriate number of points.

6.3 Conversation game
In the later lessons the students should create an application that
implements a conversational game. In this game the player is go-
ing through a virtual world, asks the computer some questions and
according its responses he decides how to continue. So the as-
signment is relatively general and it is very difficult to find a way
to test all the solutions uniformly without spending a lot of time
by communicating with applications through a keyboard.

The first rule that can help us in our attempt to automate evalua-
tion of such solutions is to set some borders for all handed in solu-
tions. I therefore defined a framework where the students should
put their solutions (see fig. 3).

The class diagram in this case is a bit more complicated despite
some of the dependences are not shown there. Such an assign-
ments is not solvable with one class. Instead whole set of cooper-
ating classes must be used.

Figure 3: The project Game

If we want reasonably keep track of the received particular solu-
tions, we need to ask students to put their solutions into special
packages named by their ID. The class names inside theses pack-
ages are then not important.

So we have a framework defining borders and rules. We need to
have a set of tests. However we cannot design these tests for all
students because we don’t know what game will each particular
student design and program. The first part of the assignment is
therefore to draft a scenario of their game. This scenario should be
designed as a sequence of test steps simulating behaviour of a
player. Every step should be an instance of the class TestStep.
These instances should contain following information:

• The command entered by the user at the start of this step and
the application has to react on it.

• The message with answer of the application on the entered
command.

• The room (or its equivalent) where the user comes after proc-
essing this command by the application.

• The set of exits from the target room (that means the set of
rooms where the player can go from the target room).

• The set of objects occurring in the target room.

• The actual content of the user’s bag after processing the com-
mand.

Instances of the class GameTest have two methods:

• The method testTests(AGame) simulates behaviour of the
game in such a way, that it goes through particular test steps
and writes the requested game states after particular com-
mands. This method is designed especially for teachers to be
able to quickly evaluate the presented scenarios and estimate,
if such a game is appropriate to the abilities of the particular
student.

• After confirming the presented scenario the students start to
develop the program. Their task is simple: develop a program
behaving exactly in the way defined by the confirmed sce-
nario. For testing this program serves the method
testGame(AGame) that sends to the tested program the se-
quence of test steps and checks if the program responses in the
way requested by the scenario.

The final test of the handed in solutions is again simple. The
teacher copies all packages into one project and let the test library
search all the classes extending the class AGame. Asks each found
class for its author, opens the saved scenario and checks how the
behaviour of this class (more precisely behaviour of the applica-
tion represented by this class) corresponds to the behaviour re-
quested by corresponding scenario.

7. CONCLUSION
The paper showed that the appropriate use of the interface gives in
our hand very powerful tool for designing assignments and espe-
cially for following evaluation of the handed in solutions. It dem-
onstrated how to prepare assignments forcing students to master
the skills that they need in their future work and simultaneously
allowing the teacher to automate the evaluation of the handed in
solutions.

The article also introduces the first version of the library used for
automation of the evaluation of handed in programs. It use can
significantly shorten the time needed for this evaluation.

The use of methodology Design Patterns First that put the expla-
nation of the interface in the very beginning lessons allows to use
all these advantages for the all time of the course.

8. REFERENCES
[1] BERGIN, Joseph: Fourteen Pedagogical Patterns. Proceed-

ings of Fifth European Conference on Pattern Languages of
Programs. (EuroPLoP™ 2000) Irsee 2000.

[2] BLOCH, Joshua. Effective Java – Programming Language
Guide. Addison-Wesley Professional © 2001. 252 s. ISBN
0-201-31005-8. (Český překlad: Java efektivně – 57 zásad
softwarového experta. Praha: Grada © 2002. 230 s. ISBN 80-
247-0416-1)

[3] Computing Curricula 2001, Computer Science Volume.
http://www.sigcse.org/cc2001/

[4] GAMMA, Erich; HELM, Richard; JOHNSON Ralph;
VLISSIDES, John. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, © 1995. 396 s.
(Český přelad: Návrh programů pomocí vzorů. Stavební
kameny objektově orientovaných programů. Praha: Grada, ©
2003. 386 s., ISBN 80-247-0302-5)

[5] KERIEVSKY Joshua: Refactoring to Patterns, Addison
Wesley, © 2005, 368 stran, ISBN 0-321-21335-1

[6] METSKER Steven John: Design Pattersn Java Workbook.
Addison-Wesley, © 2002, 476 stran, ISBN 0-201-74397-3.

[7] PECINOVSKÝ Rudolf, PAVLÍČKOVÁ Jarmila: Order of
Explanation Should be Interface – Abstract Classes – Over-
riding, Proceedings of the Twelfth Annual Conference on In-
novation and Technology in Computer Science Education,
University of Dundee 2007.

[8] PECINOVSKÝ Rudolf: Návrhové vzory, Computer Press, ©
2007, 528 stran. ISBN 978-80-251-1582-4.

[9] PECINOVSKÝ Rudolf: Aplikace metodiky „Design Patterns
First“. Objekty 2005 – sborník příspěvků devátého ročníku kon-
ference, VŠB, Ostrava 2005. ISBN 80-213-1568-7.

[10] PECINOVSKÝ Rudolf, PAVLÍČKOVÁ Jarmila,
PAVLÍČEK Luboš: Let’s Modify the Objects First Approach
into Design Patterns First, Proceedings of the Eleventh An-
nual Conference on Innovation and Technology in Computer
Science Education, University of Bologna 2006.

[11] PECINOVSKÝ Rudolf: Začlenění návrhových vzorů do
výuky programování. Objekty 2005 – sborník příspěvků
devátého ročníku konference, VŠB, Ostrava 2005. ISBN
80-248-0595-2.

[12] PECINOVSKÝ Rudolf: Jak efektivně učit OOP. Tvorba
softwaru 2005 – sborník přednášek. ISBN 80-86840-14-X.

[13] PECINOVSKÝ Rudolf: Myslíme objektově v jazyku Java
5.0, Grada, © 2004, 602 stran, ISBN 80-247-0941-4.

[14] SCHMOLITZKY, A.: “Objects First, Interfaces Next” or In-
terfaces Before Inheritance. In Proc. OOPSLA '04 (Compan-
ion: Educators' Symposium), (Vancouver, BC, Canada,
2004), ACM Press.

[15] SCHMOLITZKY, A.: Teaching Inheritance Concepts with
Java. Proceedings of International Conference on Principles
and Practices of Programming In Java (PPPJ 2006) Man-
heim, 2006

[16] Shalloway, A., Trott, J. A. Design Patterns Explained – A
new Perspective on Object-Oriented Design (2nd edition).
Addison-Wesley, 2004. ISBN 0-321-24714-0.

[17] STELTING Stephen, MAASSEN Olaf: Applied Java Pat-
terns, Sun Microsystems Press, © 2002, 576 stran, ISBN 0-
13-093538-7

[18] The ACM Java Task Force – Project Rationale, Second Pub-
lic Draft (February 23, 2006), ke stažení na adrese
http://www-cs-faculty.stanford.edu/~eroberts//jtf/rationale/rationale.p
df

