
Let’s Modify the Objects-First Approach
into Design-Patterns-First

Rudolf Pecinovský
Amaio Technologies Inc.
Education Department

Trebohosticka 14
100 00 Prague 10
+420 603 330 090

rudolf@pecinovsky.cz

Jarmila Pavlíčková Luboš Pavlíček
University of Economics Prague

Department of Information Technologies
Churchill sq. 4

130 00 Prague 3
+420 224 095 460

 pavjar@vse.cz pavlicek@vse.cz

ABSTRACT
Design patterns have already gained great importance in both
design and implementation of object-oriented software in many
diverse areas of applications. In order to get the ideas of design
patterns firmly established, they should be taught right from the
beginning of a course. This paper outlines how the presently used
Objects-First approach can be extended and changed into the
Design-Patterns-First approach. The outline of the first five
lectures of our university course, which is structured according to
this approach, is presented. Some examples of design patterns
suitable for the very first lecture of such introductory course are
also included.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Design, Languages

Keywords
Objects First, Design Patterns, Software Engineering Education,
Design-Patterns-First, teaching theory.

1. INTRODUCTION
When we first experienced the Objects First approach to the
teaching of computer programming, we were very excited.
However, during practical application of this methodology in the
classrooms we have soon realized that the main rules of modern
OOP, especially the rule to program to an interface, not an
implementation and the usage of design patterns, should be taught
at the very beginning of a course.

This modified sequence of the concepts presented to students of
introductory courses was first published in a book [13], written by
one of the authors of this paper. This book has quickly gained large
acceptance as a textbook for beginners and as a stimulating reading
for professionals and enthusiasts. The positive feedback from the
readers of this book and from the teachers who have used it in their
courses has confirmed to us, that we are going in the right direction.

The first mentioned rule of OOP is to program against the
interface and not against the implementation. The Java interface
allows us to formalize this rule and it often allows implementing
it, too. The explanation of interfaces in our courses has been
moving closer and closer to the introductory lectures. In our
current course it takes place in the second lecture, just after the
first examples of coding.

The second key rule is to use design patterns wherever it is
feasible. We have also felt the need to introduce this concept as
early as possible in the lecture course. Currently, we teach the
design patterns to our students already at the end of the first
lecture; even before their first experience with the code!

We have tested this approach in three different types of courses:

• Continuing education classes for students aged 12 to 16.

• Introductory courses of programming at the University of
Economics in Prague.

• One- or two-week courses for professional programmers.

These experiences have demonstrated that if we modify the
Objects first approach into the Design Patterns First we will
improve the results in teaching of OOP paradigm.

Let us now introduce the outline of the first few lessons of our
typical course, taught according to this new methodology. Maybe
the presented examples will not be exactly the Killer Examples
[20]; however in our introductory lectures they have proved
themselves very useful.

2. FIRST LESSON

2.1 Introduction of objects
During the first lesson the students discover the concept of objects
and classes. We introduce the first project (see Figure 1) to them
and then we explain the interactions between instances. Here, at
the very beginning, it is quite important to show that objects in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

the program are not merely the representation of real life
“objects”. In object oriented programming the objects may
represent also properties, events, activities or other concepts. Thus
in our first example project the students meet the objects
representing colours and directions.

2.2 Creating of the Test Class
If we use an appropriate integrated development environment,
IDE, e.g. popular BlueJ, the students can do something more than
just to create the instances of existing classes straight from the
beginning. They can define a new class of their own – the unit test
class. The BlueJ watches their activities and creates programs,
which can reproduce them as test methods of this class.

2.3 Introducing of design patterns
During the first lesson we first introduce the design patterns to the
students. At this moment we cannot in detail describe their coding,
but we can show some tasks which are solved by the use of design
patterns.

In our sample project of the geometric shapes we explain that
there are classes with different constraints on the number of
instances:
• no instance – the auxiliary class IO,
• just one instance – the class Canvas,
• the known number of known instances – the class Direction,
• number of instances controlled by the class itself – the class

Color,
• arbitrary number of on the fly created instances – the shape

classes Ellipse, Rectangle and Triangle.
We explain to our students that the design patterns are
programmatic equivalent of mathematical formulae. The
programmers who are familiar with them are able to solve the
problem much quicker and safer than those who do not know
them.

3. SECOND LESSON
The second lesson is devoted to creation of the first handwritten
programs and to discussion of a design pattern which we call
Servant (it is in reality another type of the design pattern
Command).

3.1 The first textual program
We follow up the initial play with the objects by a construction of
an empty class (we name it Empty) which we supplement by hand
step-by-step, adding the functionality from the first lesson. We
write a constructor painting a circle and then we write methods
lightOff() and lightOn(). Now we discover the necessity to
define an attribute to remember the colour of this light.

Then we explain that classes should be named according to their
purpose and we rename our class simulating a light to Light.
Finally we add a method blink() which switches the light on for
a while and then switches it off again.

3.2 The design pattern Servant,
Up-to now, there are no significant differences between the new
method of teaching and the standard methodology. The
differences begin really at this moment. We pose a problem to
define a method with a parameter blink(int) which would flash
the light given number of times. The challenge is that we want to
be able to implement this method even though our students at this
stage do not know how to write conditional statements or loops.

Some more experienced programmer amongst our students may
now suggest solving the problem using a cycle. A teacher would
object that such a solution would not be able to flash the lights
independently on other actions – for example when we want to
move the car whilst the lights are blinking continuously.
Thus we introduce the design pattern Servant, based on the
following philosophy: When we want some objects to perform a
common action, it is often not the best solution to define this
action as a method in every class. In many situations it is a more
profitable solution to define a specialised class, the Servant,
which can serve all these objects and provide the common
functionality.
To implement its service, the servant requires that the served
objects have some abilities. To be served, they have to explicitly
declare that they are able to fulfil the requirements of the servant.

3.3 Introducing interface
Now we introduce the interface as a construction, which
formalises the servant’s requirements placed on the served objects
and also a way how the served objects declare that they fulfil
these requirements.

Finally we show an example of an interface Command with a
method command() and a servant class Repeater with a method
repeat(int,Command). Its first parameter means how many times
the method command() of its second parameter should be
executed.

4. THIRD LESSON
In the third lesson we continue to work with interfaces and
introduce design patterns Crate1 and Observer.

1 The design pattern, which we call Crate, is often called

Messenger (e.g. [6]). We do not use this name, because real life
messengers are active and carry their shipments hidden.
However our object is passive (it is being sent by one method to
another) and its content is publicly visible and therefore
accessible for everyone on the way – similar as in the real crate.

Figure 1: The first project

4.1 Design pattern Crate
We define the method setPosition(int,int), which moves the
“light” into a given position.

Now we suggest that we will teach our objects how to
continuously move towards a destination position. It is the right
task for some servant. We try to describe the requirements that
such a servant should place on the served objects and we conclude
that the moved object should not only be able to set their final
position, but they also should be able report their present position.

When we try to define the method getPosition(), we meet a
problem that Java methods only allow a single return value. So
how can a method return more items? As an answer we introduce
a design pattern called Crate comprising a class Position, an
interface Movable and a class Mover and show how it can
continuously move the flashing lights.

4.2 Design pattern Observer,
event driven programs

By experimenting with the mover we will discover a big
disadvantage of the current project: the moving objects erase the
objects over which they travel. Therefore we open a new project,
in which the present Canvas is replaced by a class ActiveCanvas.
However, ActiveCanvas is not the real canvas – it is an active
agent managing the correct painting of multiple overlapping
objects. Every object which wants to be visible should register
itself with ActiveCanvas.

ActiveCanvas is willing to register only those objects which are
able to paint themselves using a given paint-tool2 on demand. The
formal declaration of this demand is the interface Paintable. In
other words: ActiveCanvas is willing to register only objects
implementing the interface Paintable.

Here we make a note that this mechanism is an implementation of
the Observer design pattern. We point out that the painted object
doesn’t know a priory when it will be asked to repaint itself. This
action will be made as a response to the need for the
ActiveCanvas to repaint the whole picture. On this note, we
conclude the lesson by explaining that this is the fundamental
principle of the event driven programming.

5. FOURTH LESSON
So far we have defined only simple classes performing simple
tasks. It is now time to do some more complicated programming.
Thus, for a while, we leave the realm of graphic objects and
present a familiar application Calculator.

5.1 One class – one task
We explain to our students that every class should fulfil only one
principal task. Therefore the calculator in our example is not
defined in one class, but its definition is divided among two
classes:

• the class GUI implements the graphical user interface and

2 Our students have often problems with the term graphical

context. Therefore we substitute it for the term paint-tool and
wrap the class Graphics into class PaintTool.

• the class CPU is responsible for the computing capabilities of
the whole calculator.

5.2 Programming to an interface
After introducing the project we announce that students will
receive a ready made class GUI and their task will be to create
their own class CPU. Each student will get his or her own
assignment. Because we do not want to prepare individual
versions of GUI for every assignment, we prepare one universal
GUI, which will cooperate with all CPUs by replacing the original
class CPU by an interface that each student in the class should
implement. This interface declares two methods:

• public List<String> getOperations()
which returns the list of button labels and

• public String process(String command)
which gets the label on the pressed key and returns the new
content of the display.

5.3 Design pattern Bridge
The GUI comes to know about its CPU from the parameter of its
constructor:

public GUI(CPU cpu)

The GUI remembers given CPU in its attribute and will
communicate with the CPU through it.

In such way we reach the independence of GUI on used CPU. We
explain students that such solution is described by the design
pattern Bridge.

5.4 Test class acting as GUI
Next step will show that the CPU class can cooperate with many
GUIs. To formalize it we rename our class to RealGUI, define the
tag interface GUI and implement this interface by RealGUI. Now
we define the unit test class TestCPU, which implements this
interface, too. We explain that this class will test the correctness
of their solutions to save our time and effort.

5.5 Version generating class
To test the student’s solutions correctly, the TestClass have to
discover what the tested assignment is. We introduce the class
Version (see Figure 2) with two public methods:

Figure 2: The Calculator

• public List<String> getOperations(int i)
which returns the list of button labels of i-th assignment and

• public List<TestStep> getTestSteps(int i)
which returns the list of single test steps, where instances of
TestStep have two attributes: the label of pressed button and
the string with the right answer to display.

In addition we extend the interface CPU with the method

public int getAssignmentNumber()

which should return the number of solved assignment.

5.6 Design pattern Strategy
In the final part of this lesson we show that our application can
still be improved. We can make it to work in different modes:
with real numbers, complex numbers, matrices, vectors, fractions
etc. We outline the possible solution of such a task.

6. FIFTH LESSON
After the excursion into calculator application we return back to
the realm of graphic objects with an objective to improve our
flashing cars. Up to now our cars were able to move only in one
direction. We will try to teach them how to turn and continue to
move in another direction.

However there is one problem here, our cars move by using the
service of the Mover objects. But the car must not turn before it
reaches the final position. So far the cars were not able to
recognize that they have reached the final position without
repeated queries about their actual position.

6.1 Inheritance of interfaces
One of the possible solutions is to use the Observer design pattern
and to ask the observer to tell the car that it has reached its
destination position. The problem is that the interfaces for mover
and for observer are different. However, we cannot simply add
the Observer’s method to Movable interface, because there may
be some objects, which don’t want to receive these messages.

Now, we explain the interface inheritance and its rules. We define
the interface Multimovable, instances of which will be movable
and will be able to get the message about reaching their
destination. Then we extend the mover by adding the possibility
to send finishing messages to Multimovable objects.

6.2 Design pattern State
The cars are ready to turn at the right moment. However, they
cannot yet turn. There are two possible solutions to this problem:
• to include multiple if or switch statements into the

implementation of the car class or
• to use some more object oriented solution.

We show to our students that the behaviour of the cars turning in
diverse directions differs substantially. This difference is so large
that it is reasonable to consider diversely turned cars as instances
of different classes.

We define such classes together with the common car class which
will represent the cars to the outside world (see Figure 3). Then
we explain that this solution implements the design pattern State.

6.3 Hiding the details, design pattern Proxy
Next scenario: cars should be running on a track, made from a
sequence of segments. The car asks the current segment about the
following segment and then it asks the following segment about
its start and moves itself to this start. Then the car asks for the
direction of this segment, takes an appropriate turn and then
continues this sequence over again.

The problem is that the track segments have to cooperate not only
with cars, but also with the builder of the roadmap. The builder has
other demands on the segments. It wants to create segments, connect
them together etc. The cars should not know about these abilities, so
that they could not change the roadmap during the race.

One of the possible solutions is to define interface which will
publish only the segment’s methods intended to be used by the
cars and hide the remaining methods. Cars will communicate only
with instances of this interface. This interface will serve as a
proxy of segments.

7. … AND SO ON
Next lessons continue up in a similar way, we keep introducing
new and new design patterns to our students and teach them the
rules they should follow when they use them.

8. CONCLUSION
This paper has indicated how to modify the Objects-First teaching
approach in order to change it into the Design-Patterns-First
approach. It presented the contents of the first few lessons
together with the examples that have been used in the classroom.
We have shown that this approach is not only logically possible,
but that with an appropriate set of examples, it can infix the object
oriented paradigm in the minds of the students very soon and
therefore very effectively.

We have verified in practice that using this methodology we can
teach even young people from an age as low as 12 years. These
very young students perceive the matter very quickly; mostly with
fewer conceptual problems than experienced professional
programmers, because they don’t need to incorporate the new
information into the present knowledge and habits (see [16]).

We have observed that when this new methodology is used in the
courses for the experienced professional programmers converting
to OOP, the early introduction of interfaces removes the ground
under their feet and therefore they are not seduced to use their
previous experience to solve new problems (see [15], [16]). They
have no other option than to use the new, object oriented
constructs and to start “object oriented thinking”. This approach
significantly increases the course effectiveness and compresses
the time needed for converting the participants to the new
paradigm.

University students at our lecture courses have profited from both
of these advantages, mentioned above: the beginners obtained
deeper skills in an understandable way and those already trained
in procedural programming are not able to heavily abuse their old
bad habits. The teachers have benefited from the more even
levelling of students, because the advanced students soon
recognize that they are in the entirely new programming world
and don’t try to solve the exercises in the old way.

Figure 3: Turning cars

The teaching of computer science at the University of Economics
in Prague is focused to analysis and design of business
information handling systems. The new methodology equips our
students with much more advanced level of basic programming
skills and deeper knowledge and understanding of fundamental
design principles.

In all these three groups the early introduction of design patterns has
allowed teaching of the key principles almost from the onset of the
course. The students “live” in the “design pattern environment”
during the entire course and these principles become firmly
established in their minds.

9. REFERENCES
[1] Astrachan, O., Geoffrey B., Landon C., Garrett M. Design

Patterns: An Essential Component of CS Curricula,
ACMSIGCSE Bulletin v 30 n 1, 153-160.

[2] Alphonce, C., Ventura, P. Object-Orientation in CS1-CS2 by
Design, Proceedings of the 7th Annual Conference on
Innovation and Technology in Computer Science Education
(ITiCSE 2002), pages 70-74.

[3] Alphonce, C., Ventura, P. Using graphics to support the
teaching of fundamental object-orientation principles in CS1,
2003. Proceedings companion of the 18th Annual
Conference on Object-Oriented Programming, Systems,
Languages and Applications, ACM Press.

[4] Barnes, D., and Kölling, M. Objects First With Java: A
Practical Introduction Using BlueJ (2nd edition). Prentice
Hall, 2004. ISBN 0-131-24933-9.

[5] Computing Curricula 2001, Computer Science Volume.
http://www.sigcse.org/cc2001/

[6] Eckel, B. Thinking in Patterns. http://www.bruceeckel.com

[7] Freeman, E., Freeman, E. Head First Design Patterns.
O’Reilly, 2004. ISBN 0-596-00712-4.

[8] Horstmann, C. Object-Oriented Design & Patterns. John
Wiley & Sons, Inc., 2004. ISBN 0-471-74487-5

[9] Lewis, T. L., Rosson, M. B., Pérez-Quinones, M. A. What do
the experts say? – Teaching Introductory Design from an
Expert's Perspective, Proceedings of the 35th SIGCSE
technical symposium on Computer science education, March
03-07, 2004, Norfolk, Virginia, USA

[10] Metsker, S. J. Design Patterns Java Workbook. Addison
Wesley, 2002. ISBN 0-201-74397-3.

[11] Nevison, Ch. Wells, B. Teaching Objects Early and Design
Patterns in Java Using Case Studies, Proceedings of the 8th
Annual Conference on Innovation and Technology in
computer Science Education (ITiCSE 2003).

[12] Dung Nguyen, Wong, S. Design Patterns: Pedagogical
Foundations For Object-Orientation. A workshop presented
at University of Wisconsin System Computer Science
Education Workshop, University of Wisconsin, October 13,
2000. http://exciton.cs.oberlin.edu/uwisconsin/

[13] Pecinovský, R. Myslíme objektově v jazyku Java 5.0 (Object
Thinking in Java 5.0), Grada Publishing, 2004. ISBN
80-247-0941-4.

[14] Pecinovský, R. Začlenění návrhových vzorů do výuky
programování (Incorporating design patterns into
programming pedagogy). Proceedings of the conference
Objects 2005, pages 26 – 42. VŠB – Technical University of
Ostrava, 2005. ISBN 80-248-0595-2.

[15] Pecinovský, R. Jak efektivně učit OOP (How to teach OOP
effectively). Proceedings of the conference Software
Development 2005, pages 174 – 182. VŠB – Technical
University of Ostrava, 2005. ISBN 80-86840-14-X.

[16] Pecinovský, R.: Jak při výuce Javy opravdu začít s objekty
(How to really start with objects by teaching Java).
Proceedings of the conference Objects 2004, pages 241 –
259. Czech University of Agriculture, Prague, 2004. ISBN
80-248-0672-X.

[17] Shalloway, A., Trott, J. A. Design Patterns Explained – A
new Perspective on Object-Oriented Design (2nd edition).
Addison-Wesley, 2004. ISBN 0-321-24714-0.

[18] Ventura, P., Alphonce, C. Teaching OOD and OOP through
Java and UML in CS1 and CS2. Position paper presented at
the Fifth Workshop on Pedagogies and Tools for
Assimilating Object Oriented Concepts, October 2001.
http://www.cs.umu.se/~jubo/Meetings/OOPSLA01/Contribut
ions/PVentura.html

[19] Wick, M. R. Kaleidoscope: Using design patterns in CS1.
Proceedings of the Thirty–Second SIGCSE Technical
Symposium on Computer Science Education, pages 258–262,
2001

[20] 4th "Killer Examples" for Design Patterns and Objects First
workshop http://www.cse.buffalo.edu/faculty/alphonce/
KillerExamples/OOPSLA2005/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

